本文主要介紹了python opencv通過(guò)4坐標(biāo)剪裁圖片,分享給大家,具體如下:
效果展示,
裁剪出的單詞圖像(如下)
這里程序我是用在paddleOCR里面,通過(guò)識(shí)別模型將識(shí)別出的圖根據(jù)程序提供的坐標(biāo)(即四個(gè)頂點(diǎn)的值)進(jìn)行摳圖的程序(上面的our和and就是扣的圖),并進(jìn)行了封裝,相同格式的在這個(gè)基礎(chǔ)上改就是了
[[[368.0, 380.0], [437.0, 380.0], [437.0, 395.0], [368.0, 395.0]], [[496.0, 376.0], [539.0, 378.0], [538.0, 397.0], [495.0, 395.0]], [[466.0, 379.0], [498.0, 379.0], [498.0, 395.0], [466.0, 395.0]], [[438.0, 379
.0], [466.0, 379.0], [466.0, 395.0], [438.0, 395.0]], ]
從程序得到的數(shù)據(jù)格式大概長(zhǎng)上面的樣子,由多個(gè)四個(gè)坐標(biāo)一組的數(shù)據(jù)(如下)組成,即下面的[368.0, 380.0]為要裁剪圖片左上角坐標(biāo),[437.0, 380.0]為要裁剪圖片右上角坐標(biāo),[437.0, 395.0]為要裁剪圖片右下角坐標(biāo),[368.0, 395.0]為要裁剪圖片左下角坐標(biāo).
[[368.0, 380.0], [437.0, 380.0], [437.0, 395.0], [368.0, 395.0]]
而這里剪裁圖片使用的是opencv(由于參數(shù)的原因沒(méi)有設(shè)置角度的話(huà)就只能裁剪出平行的矩形,如果需要裁減出不與矩形圖片編譯平行的圖片的話(huà),參考這個(gè)博客進(jìn)行進(jìn)一步的改進(jìn)點(diǎn)擊進(jìn)入)
裁剪部分主要是根據(jù)下面這一行代碼進(jìn)行的,這里要記住(我被這里坑了一下午),
參數(shù) tr[1]:左上角或右上角的縱坐標(biāo)值
參數(shù)bl[1]:左下角或右下角的縱坐標(biāo)值
參數(shù)tl[0]:左上角或左下角的橫坐標(biāo)值
參數(shù)br[0]:右上角或右下角的橫坐標(biāo)值
crop = img[int(tr[1]):int(bl[1]), int(tl[0]):int(br[0]) ]
總的程序代碼如下
import numpy as np import cv2 def np_list_int(tb): tb_2 = tb.tolist() #將np轉(zhuǎn)換為列表 return tb_2 def shot(img, dt_boxes):#應(yīng)用于predict_det.py中,通過(guò)dt_boxes中獲得的四個(gè)坐標(biāo)點(diǎn),裁剪出圖像 dt_boxes = np_list_int(dt_boxes) boxes_len = len(dt_boxes) num = 0 while 1: if (num boxes_len): box = dt_boxes[num] tl = box[0] tr = box[1] br = box[2] bl = box[3] print("打印轉(zhuǎn)換成功數(shù)據(jù)num =" + str(num)) print("tl:" + str(tl), "tr:" + str(tr), "br:" + str(br), "bl:" + str(bl)) print(tr[1],bl[1], tl[0],br[0]) crop = img[int(tr[1]):int(bl[1]), int(tl[0]):int(br[0]) ] # crop = img[27:45, 67:119] #測(cè)試 # crop = img[380:395, 368:119] cv2.imwrite("K:/paddleOCR/PaddleOCR/screenshot/a/" + str(num) + ".jpg", crop) num = num + 1 else: break def shot1(img_path,tl, tr, br, bl,i): tl = np_list_int(tl) tr = np_list_int(tr) br = np_list_int(br) bl = np_list_int(bl) print("打印轉(zhuǎn)換成功數(shù)據(jù)") print("tl:"+str(tl),"tr:" + str(tr), "br:" + str(br), "bl:"+ str(bl)) img = cv2.imread(img_path) crop = img[tr[1]:bl[1], tl[0]:br[0]] # crop = img[27:45, 67:119] cv2.imwrite("K:/paddleOCR/PaddleOCR/screenshot/shot/" + str(i) + ".jpg", crop) # tl1 = np.array([67,27]) # tl2= np.array([119,27]) # tl3 = np.array([119,45]) # tl4 = np.array([67,45]) # shot("K:\paddleOCR\PaddleOCR\screenshot\zong.jpg",tl1, tl2 ,tl3 , tl4 , 0)
特別注意對(duì)np類(lèi)型轉(zhuǎn)換成列表,以及crop = img[tr[1]:bl[1], tl[0]:br[0]]
的中參數(shù)的位置,
用了兩種方法保存圖片,opencv和Image,實(shí)踐證明opencv非???/p>
from PIL import Image import os import cv2 import time import matplotlib.pyplot as plt def label2picture(cropImg,framenum,tracker): pathnew ="E:\\img2\\" # cv2.imshow("image", cropImg) # cv2.waitKey(1) if (os.path.exists(pathnew + tracker)): cv2.imwrite(pathnew + tracker+'\\'+framenum + '.jpg', cropImg,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) else: os.makedirs(pathnew + tracker) cv2.imwrite(pathnew + tracker+'\\'+framenum + '.jpg', cropImg,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) f = open("E:\\hypotheses.txt","r") lines = f.readlines() for line in lines: li = line.split(',') print(li[0],li[1],li[2],li[3],li[4],li[5]) filename = li[0]+'.jpg' img = cv2.imread("E:\\DeeCamp\\img1\\" + filename) crop_img = img[int(li[3][:-3]):(int(li[3][:-3]) + int(li[5][:-3])), int(li[2][:-3]):(int(li[2][:-3]) + int(li[4][:-3]))] # print(int(li[2][:-3]),int(li[3][:-3]),int(li[4][:-3]),int(li[5][:-3])) label2picture(crop_img, li[0], li[1]) # # # x,y,w,h = 87,158,109,222 # img = cv2.imread("E:\\DeeCamp\\img1\\1606.jpg") # # print(img.shape) # crop = img[y:(h+y),x:(w+x)] # cv2.imshow("image", crop) # cv2.waitKey(0) # img = Image.open("E:\\DeeCamp\\img1\\3217.jpg") # # cropImg = img.crop((x,y,x+w,y+h)) # cropImg.show() # img = Image.open("E:\\deep_sort-master\\MOT16\\train\\try1\\img1\\"+filename) # print(int(li[2][:-3]),(int(li[2][:-3])+int(li[4][:-3])), int(li[3][:-3]),(int(li[3][:-3])+int(li[5][:-3]))) # #裁切圖片 # # cropImg = img.crop(region) # # cropImg.show() # framenum ,tracker= li[0],li[1] # pathnew = 'E:\\DeeCamp\\deecamp項(xiàng)目\\deep_sort-master\\crop_picture\\' # if (os.path.exists(pathnew + tracker)): # # 保存裁切后的圖片 # plt.imshow(cropImg) # plt.savefig(pathnew + tracker+'\\'+framenum + '.jpg') # else: # os.makedirs(pathnew + tracker) # plt.imshow(cropImg) # plt.savefig(pathnew + tracker+'\\'+framenum + '.jpg')
到此這篇關(guān)于python opencv通過(guò)4坐標(biāo)剪裁圖片的文章就介紹到這了,更多相關(guān)opencv 剪裁圖片內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
標(biāo)簽:江蘇 云南 商丘 金融催收 定西 寧夏 龍巖 酒泉
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《python opencv通過(guò)4坐標(biāo)剪裁圖片》,本文關(guān)鍵詞 python,opencv,通過(guò),坐標(biāo),剪裁,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。