首先介紹一個(gè)最基本的使用方法,就是使用ProjectQ來打印量子算法中所輸入的量子門操作,這里使用到了ProjectQ中的DummyEngine
后端用于保存操作的指令。比如最簡單的一個(gè)Bell State的制備,可以通過如下代碼實(shí)現(xiàn),并且打印出所保存的基本操作:
from projectq import MainEngine from projectq.cengines import DummyEngine from projectq.ops import H, CX, All, Measure backend = DummyEngine(save_commands=True) eng = MainEngine(backend=backend) qureg = eng.allocate_qureg(2) H | qureg[0] CX | (qureg[0], qureg[1]) All(Measure) | qureg eng.flush(deallocate_qubits=True) for cmd in backend.received_commands: print (cmd)
運(yùn)行結(jié)果如下:
Allocate | Qureg[0] H | Qureg[0] Allocate | Qureg[1] CX | ( Qureg[0], Qureg[1] ) Measure | Qureg[0] Measure | Qureg[1] Deallocate | Qureg[0] Deallocate | Qureg[1]
這里有一點(diǎn)需要注意的是,如果是單次運(yùn)算,我們到Measure就可以結(jié)束了。但是如果同一個(gè)線程的任務(wù)還沒有結(jié)束的話,需要在Measure之后加上一個(gè)deallocate_qubits=True
的配置項(xiàng),用于解除當(dāng)前分配的量子比特所占用的內(nèi)存。
在量子算法的實(shí)現(xiàn)中,我們可以用一些函數(shù)或者類來封裝一部分的量子算法操作指令,但是這可能會導(dǎo)致一個(gè)問題,那就是在ProjectQ上打印出來的操作指令沒有把封裝的模塊的內(nèi)容輸出出來,比如如下的案例:
from projectq import MainEngine from projectq.cengines import DummyEngine from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator backend = DummyEngine(save_commands=True) eng = MainEngine(backend=backend) qureg = eng.allocate_qureg(3) H | qureg[0] CX | (qureg[0], qureg[1]) TimeEvolution(1, QubitOperator('X2 X1')) | qureg All(Measure) | qureg eng.flush() for cmd in backend.received_commands: print (cmd)
執(zhí)行結(jié)果如下:
Allocate | Qureg[0] H | Qureg[0] Allocate | Qureg[1] CX | ( Qureg[0], Qureg[1] ) Measure | Qureg[0] Allocate | Qureg[2] exp(-1j * (1.0 X0 X1)) | Qureg[1-2] Measure | Qureg[1] Measure | Qureg[2]
我們發(fā)現(xiàn)這里的含時(shí)演化的操作算符沒有被分解,而是直接打印輸出了出來。但是如果在硬件系統(tǒng)中,只能夠識別支持的指令操作,這里的含時(shí)演化操作可能并未在量子硬件體系中被實(shí)現(xiàn),因此我們就需要在將指令發(fā)送給量子硬件之前,就對其進(jìn)行分解。
這里我們直接調(diào)用ProjectQ的配置中的restrictedgateset方法進(jìn)行操作分解,我們將單比特門操作的范圍放寬到所有的操作,但是雙比特操作只允許CX操作,并將這個(gè)配置作為engin_list配置到ProjectQ的MainEngine中:
from projectq import MainEngine from projectq.cengines import DummyEngine from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator from projectq.setups import restrictedgateset engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates=(CX,)) backend = DummyEngine(save_commands=True) eng = MainEngine(backend=backend,engine_list=engine_list) qureg = eng.allocate_qureg(3) H | qureg[0] CX | (qureg[0], qureg[1]) TimeEvolution(1, QubitOperator('X2 X1')) | qureg All(Measure) | qureg eng.flush(deallocate_qubits=True) for cmd in backend.received_commands: print (cmd)
打印輸出的結(jié)果如下:
Allocate | Qureg[0] H | Qureg[0] Allocate | Qureg[1] CX | ( Qureg[0], Qureg[1] ) Measure | Qureg[0] Allocate | Qureg[2] H | Qureg[2] H | Qureg[1] CX | ( Qureg[1], Qureg[2] ) Rz(2.0) | Qureg[2] CX | ( Qureg[1], Qureg[2] ) H | Qureg[1] Measure | Qureg[1] H | Qureg[2] Measure | Qureg[2] Deallocate | Qureg[0] Deallocate | Qureg[1] Deallocate | Qureg[2]
可以看到含時(shí)演化算符已經(jīng)被分解并輸出了出來。由于已知單比特量子門加上一個(gè)CX是一個(gè)完備的量子門集合,因此一般我們可以直接使用這個(gè)集合來進(jìn)行量子門操作指令集的限制。
QFT是ProjectQ中所自帶支持的量子傅里葉變換的量子門操作封裝,跟上一個(gè)章節(jié)中所介紹的含時(shí)演化算符類似的,我們可以用restrictedgateset
來具體分解QFT算符:
from projectq import MainEngine from projectq.cengines import DummyEngine from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator, QFT from projectq.setups import restrictedgateset engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates=(CX,)) backend = DummyEngine(save_commands=True) eng = MainEngine(backend=backend,engine_list=engine_list) qureg = eng.allocate_qureg(3) H | qureg[0] CX | (qureg[0], qureg[1]) QFT | qureg All(Measure) | qureg eng.flush(deallocate_qubits=True) for cmd in backend.received_commands: print (cmd)
輸出的結(jié)果如下:
Allocate | Qureg[2] Allocate | Qureg[1] H | Qureg[2] Rz(0.785398163398) | Qureg[2] Allocate | Qureg[0] H | Qureg[0] CX | ( Qureg[0], Qureg[1] ) R(0.785398163398) | Qureg[1] CX | ( Qureg[1], Qureg[2] ) Rz(11.780972450962) | Qureg[2] CX | ( Qureg[1], Qureg[2] ) R(0.392699081698) | Qureg[0] Rz(0.392699081698) | Qureg[2] CX | ( Qureg[0], Qureg[2] ) H | Qureg[1] Rz(12.173671532661) | Qureg[2] CX | ( Qureg[0], Qureg[2] ) R(0.785398163398) | Qureg[0] Rz(0.785398163398) | Qureg[1] CX | ( Qureg[0], Qureg[1] ) Rz(11.780972450962) | Qureg[1] CX | ( Qureg[0], Qureg[1] ) H | Qureg[0] Measure | Qureg[0] Measure | Qureg[1] Measure | Qureg[2] Deallocate | Qureg[1] Deallocate | Qureg[2] Deallocate | Qureg[0]
如果2比特門操作也不加以限制的化,ProjectQ中會自動選取最簡易的分解形式:
from projectq import MainEngine from projectq.cengines import DummyEngine from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator, QFT from projectq.setups import restrictedgateset engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates="any") backend = DummyEngine(save_commands=True) eng = MainEngine(backend=backend,engine_list=engine_list) qureg = eng.allocate_qureg(3) H | qureg[0] CX | (qureg[0], qureg[1]) QFT | qureg All(Measure) | qureg eng.flush(deallocate_qubits=True) for cmd in backend.received_commands: print (cmd)
輸出結(jié)果如下:
Allocate | Qureg[0] Allocate | Qureg[1] H | Qureg[0] CX | ( Qureg[0], Qureg[1] ) Allocate | Qureg[2] H | Qureg[2] CR(1.570796326795) | ( Qureg[1], Qureg[2] ) CR(0.785398163397) | ( Qureg[0], Qureg[2] ) H | Qureg[1] CR(1.570796326795) | ( Qureg[0], Qureg[1] ) H | Qureg[0] Measure | Qureg[0] Measure | Qureg[1] Measure | Qureg[2] Deallocate | Qureg[1] Deallocate | Qureg[2] Deallocate | Qureg[0]
可以發(fā)現(xiàn)使用了CR來替代CX之后,分解出來的線路會更加的簡短。
本文主要從工程實(shí)現(xiàn)的角度,講解在ProjectQ開源量子計(jì)算模擬器框架中,實(shí)現(xiàn)量子門操作分解與輸出的方法。通過這個(gè)方法,可以限制量子指令集的范圍,將量子算法中不被支持的量子門操作等價(jià)(或近似地)變化到量子硬件體系所支持的量子指令集上。
以上就是python使用ProjectQ生成量子算法指令集的詳細(xì)內(nèi)容,更多關(guān)于python 用ProjectQ生成算法指令集的資料請關(guān)注腳本之家其它相關(guān)文章!
標(biāo)簽:黑龍江 銅川 呂梁 阿里 潛江 常德 株洲 通遼
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《python使用ProjectQ生成量子算法指令集》,本文關(guān)鍵詞 python,使用,ProjectQ,生成,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。