主頁 > 知識庫 > pandas調(diào)整列的順序以及添加列的實(shí)現(xiàn)

pandas調(diào)整列的順序以及添加列的實(shí)現(xiàn)

熱門標(biāo)簽:西藏智能外呼系統(tǒng)五星服務(wù) 400電話申請服務(wù)商選什么 清遠(yuǎn)360地圖標(biāo)注方法 平頂山外呼系統(tǒng)免費(fèi) 在哪里辦理400電話號碼 江蘇客服外呼系統(tǒng)廠家 千陽自動外呼系統(tǒng) 原裝電話機(jī)器人 工廠智能電話機(jī)器人

在對excel的操作中,調(diào)整列的順序以及添加一些列也是經(jīng)常用到的,下面我們用pandas實(shí)現(xiàn)這一功能。

1、調(diào)整列的順序

>>> df = pd.read_excel(r'D:/myExcel/1.xlsx')
>>> df
  A B C D
0  bob 12 78 87
1 millor 15 92 21
>>> df.columns
Index(['A', 'B', 'C', 'D'], dtype='object')
# 這是最簡單常用的一種方法,相當(dāng)于指定列名讓pandas
# 從df中獲取
>>> df[['A', 'D', 'C', 'B']]
  A D C B
0  bob 87 78 12
1 millor 21 92 15
# 這也是可以的
>>> df[['A', 'A', 'A', 'A']]
  A  A  A  A
0  bob  bob  bob  bob
1 millor millor millor millor

2、添加某一列或者某幾列

(1)直接添加

>>> df['E']=[1, 2]
>>> df
  A B C D E
0  bob 12 78 87 1
1 millor 15 92 21 2

(2)調(diào)用assign方法。該方法善于根據(jù)已有的列添加新的列,通過基本運(yùn)算,或者調(diào)用函數(shù)

>>> df
  A B C D
0  bob 12 78 87
1 millor 15 92 21
# 其中E是列名,根據(jù)B列-C列的值得到
>>> df.assign(E=df['B'] - df['C'])
  A B C D E
0  bob 12 78 87 -66
1 millor 15 92 21 -77
# 添加兩列也可以
>>> df.assign(E=df['B'] - df['C'], F=df['B'] * df['C'])
  A B C D E  F
0  bob 12 78 87 -66 936
1 millor 15 92 21 -77 1380

哈哈,以上就是pandas關(guān)于調(diào)整列的順序以及新增列的用法

補(bǔ)充:pandas修改DataFrame中的列名調(diào)整列的順序

修改列名:

直接調(diào)用接口:

df.rename()

看一下接口中的定義:

 def rename(self, *args, **kwargs):
  """
  Alter axes labels.
  Function / dict values must be unique (1-to-1). Labels not contained in
  a dict / Series will be left as-is. Extra labels listed don't throw an
  error.
  See the :ref:`user guide basics.rename>` for more.
  Parameters
  ----------
  mapper, index, columns : dict-like or function, optional
   dict-like or functions transformations to apply to
   that axis' values. Use either ``mapper`` and ``axis`` to
   specify the axis to target with ``mapper``, or ``index`` and
   ``columns``.
  axis : int or str, optional
   Axis to target with ``mapper``. Can be either the axis name
   ('index', 'columns') or number (0, 1). The default is 'index'.
  copy : boolean, default True
   Also copy underlying data
  inplace : boolean, default False
   Whether to return a new DataFrame. If True then value of copy is
   ignored.
  level : int or level name, default None
   In case of a MultiIndex, only rename labels in the specified
   level.
  Returns
  -------
  renamed : DataFrame
  See Also
  --------
  pandas.DataFrame.rename_axis
  Examples
  --------
  ``DataFrame.rename`` supports two calling conventions
  * ``(index=index_mapper, columns=columns_mapper, ...)``
  * ``(mapper, axis={'index', 'columns'}, ...)``
  We *highly* recommend using keyword arguments to clarify your
  intent.
  >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
  >>> df.rename(index=str, columns={"A": "a", "B": "c"})
   a c
  0 1 4
  1 2 5
  2 3 6
 
  >>> df.rename(index=str, columns={"A": "a", "C": "c"})
   a B
  0 1 4
  1 2 5
  2 3 6
 
  Using axis-style parameters
 
  >>> df.rename(str.lower, axis='columns')
   a b
  0 1 4
  1 2 5
  2 3 6
 
  >>> df.rename({1: 2, 2: 4}, axis='index')
   A B
  0 1 4
  2 2 5
  4 3 6
  """
  axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
  kwargs.update(axes)
  # Pop these, since the values are in `kwargs` under different names
  kwargs.pop('axis', None)
  kwargs.pop('mapper', None)
  return super(DataFrame, self).rename(**kwargs)

注意:

一個*,輸入可以是數(shù)組、元組,會把輸入的數(shù)組或元組拆分成一個個元素。

兩個*,輸入必須是字典格式

示例:

>>>import pandas as pd
>>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
>>> a 
 A B C
0 1 4 7
1 2 5 8
2 3 6 9 
 
#將列名A替換為列名a,B改為b,C改為c
>>>a.rename(columns={'A':'a', 'B':'b', 'C':'c'}, inplace = True)
>>>a
 a b c
0 1 4 7
1 2 5 8
2 3 6 9

調(diào)整列的順序:

如:

>>> import pandas
>>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],
'mark_date':['2017-03-07','2017-03-07','2017-03-07']}
 
>>> df = pandas.DataFrame(dict_a) # 從字典創(chuàng)建DataFrame
>>> df # 創(chuàng)建好的df列名默認(rèn)按首字母順序排序,和字典中的先后順序并不一樣,字典中'user_id','book_id','rating','mark_date'
 
 book_id mark_date rating user_id
0 3713327 2017-03-07 4 webbang
1 4074636 2017-03-07 4 webbang
2 26873486 2017-03-07 4 webbang

直接修改列名:

>>> df = df[['user_id','book_id','rating','mark_date']] # 調(diào)整列順序?yàn)?user_id','book_id','rating','mark_date'
>>> df
 
 user_id book_id rating mark_date
0 webbang 3713327 4 2017-03-07
1 webbang 4074636 4 2017-03-07
2 webbang 26873486 4 2017-03-07

就可以了。

以上為個人經(jīng)驗(yàn),希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • Python基礎(chǔ)之pandas數(shù)據(jù)合并
  • python-pandas創(chuàng)建Series數(shù)據(jù)類型的操作
  • Python數(shù)據(jù)分析之pandas函數(shù)詳解
  • python基于Pandas讀寫MySQL數(shù)據(jù)庫
  • pandas讀取excel時獲取讀取進(jìn)度的實(shí)現(xiàn)
  • pandas中.loc和.iloc以及.at和.iat的區(qū)別說明
  • 淺談Pandas dataframe數(shù)據(jù)處理方法的速度比較
  • 解決使用pandas聚類時的小坑
  • pandas 使用merge實(shí)現(xiàn)百倍加速的操作
  • 詳細(xì)介紹在pandas中創(chuàng)建category類型數(shù)據(jù)的幾種方法
  • python中pandas.read_csv()函數(shù)的深入講解
  • pandas 顛倒列順序的兩種解決方案
  • pandas快速處理Excel,替換Nan,轉(zhuǎn)字典的操作
  • Python基礎(chǔ)之教你怎么在M1系統(tǒng)上使用pandas

標(biāo)簽:股票 白城 安慶 天水 西安 錦州 日照 隨州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《pandas調(diào)整列的順序以及添加列的實(shí)現(xiàn)》,本文關(guān)鍵詞  pandas,調(diào),整列,的,順序,以及,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《pandas調(diào)整列的順序以及添加列的實(shí)現(xiàn)》相關(guān)的同類信息!
  • 本頁收集關(guān)于pandas調(diào)整列的順序以及添加列的實(shí)現(xiàn)的相關(guān)信息資訊供網(wǎng)民參考!
  • 企业400电话

    智能AI客服机器人
    15000

    在线订购

    合计11份范本:公司章程+合伙协议+出资协议+合作协议+股权转让协议+增资扩股协议+股权激励+股东会决议+董事会决议

    推薦文章